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Abstract This article focuses on the comparative study of annular wire-coating flows with
polymer melt materials. Different process designs are considered of pressure- and tube-tooling,
complementing earlier studies on individual designs. A novel mass-balance free-surface location
technique is proposed. The polymeric materials are represented via shear-thinning, differential
viscoelastic constitutive models, taken of exponential Phan-Thien/Tanner form. Simulations are
conducted for these industrial problems through distributed parallel computation, using a semi-
implicit time-stepping Taylor-Galerkin/pressure-correction algorithm. On typical field results and
by comparing short-against full-die pressure-tooling solutions, shear-rates are observed to increase
ten fold, while strain rates increase one hundred times. Tube-tooling shear and extension-rates are
one quarter of those for pressure-tooling. These findings across design options, have considerable
bearing on the appropriateness of choice for the respective process involved. Parallel finite element
results are generated on a homogeneous network of Intel-chip workstations, running PVM
(Parallel Vitual Machine) protocol over a Solaris operating system. Parallel timings yield practically
ideal linear speed-up over the set number of processors.

1. Introduction
A number of highly viscoelastic, complex extrusion flows are investigated,
commonly associated with the coatings of glass rovings, fibre-optic cables,
wire and cable manufacturing processes. Three flow problems are considered,
die swell/drag flow (short-die pressure-tooling), full pressure-tooling, and
tube-tooling flow. The first two cases are suitable for simulating industrial
narrow-bore wire-coating processes. Tube-tooling deals with thicker (wide-
bore) wire-coating processes. To provide realistic flow representation for the
polymer melt materials used in practice, the specific choice is made of a
viscoelastic constitutive model to support shear-thinning and strain-softening
behaviour. To this end, an exponential Phan-Thien/Tanner (EPTT) model is
selected, flows are computed in a two-dimensional annular coordinate system
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under creeping flow conditions, and a parallelised version of a semi-implicit
time-marching finite element scheme is used, Taylor-Galerkin/pressure-
correction (TGPC).

Wire-coating has been studied extensively in experimental and
computational form over recent years, see Ngamaramvaranggul and Webster
(2002) for review. Most studies concentrate on the pressure-tooling design.
Modelling assumptions commonly include isothermal flow conditions,
incompressibility of the coating flow (Chung, 1986), concentricity of the wire
(Tadmor and Bird, 1974), and wire speeds ranging up to one meter per second
(Mutlu et al., 1998a). Wire-coating, in the pressure-tooling context, constitutes a
process of two flow regimes: a shear dominated flow within an annular die, and
an extension-dominated flow along the wire-coating region beyond the die.
Injection of the molten polymer into the tooling die establishes a pressure-
driven flow. Contact between the molten plastic tube and the wire is made
within the die for pressure-tooling, where the travelling wire induces a drag
flow, drawing out the polymer melt to form a sheath around the cable. Unique
to tube-tooling design is the dependency upon the effects of draw-down beyond
the die. Coating production lines for narrow-bore wire use relatively high
speeds, around one meter per second, and the deposition of the fluid on a rigid
moving wire is treated as a free surface problem.

Recent attention by a number of authors has focused on the simulation of
pressure-tooling flow for viscous fluids, such as those of Caswell and Tanner
(1978); Pittman and Rashid (1986); Mitsoulis (1986); Mitsoulis et al. (1988) and
Wagner and Mistsoulis (1985). Their work dealt mainly with shear flow under
both isothermal and non-isothermal conditions. Molten polymers have been
noted to exhibit highly elastic behaviour when subject to large deformation
(Matallah et al., 2001). Only recently, numerical techniques have proven capable
of reaching solutions for sufficiently high and relevant levels of elasticity.
Many attempts involving either lubrication or inelastic approximations have
been conducted to addressed these shortcomings (Caswell and Tanner, 1978;
Mitsoulis et al., 1988; Han and Rao, 1978). With finite elements (FE) Mitsoulis
(1986) studied the wire-coating flow of power-law and Newtonian fluids.
Mitsoulis concluded that the inclusion of shear-thinning reduced the levels of
die-swell at the die-exit, as well as the recirculation that occurred within the die.
In a subsequent article, Mitsoulis et al. (1988) provided a detailed investigation
into high-speed industrial wire-coating. Two flow formulations were used; a
planar FE analysis for non-isothermal flows, and a lubrication approximation
for isothermal, power-law fluids. Results corroborated the experimental
findings of Haas and Skewis (1974).

The inadequacy of inelastic modelling was made apparent by (Binding et al.,
1996), rediscrepancies in stress and pressure drop. To predict residual stressing
within the melt coating, a viscoelastic analysis was recommended to account
for the influence of short residence times of the particles within the flow. Hence,
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we have adopted differential viscoelastic models, to predict stress development,
using state-of-the-art FE techniques to reach the high deformation rates
encountered and associated high Weissenberg numbers, O(104). For tube-
tooling flows and fixed free-surface estimation, we have conducted single-mode
PTT (Phan-Thien/Tanner) simulations in Mutlu et al. (1998a); Mutlu et al
(1998b) and Matallah et al. (2001). Tube-tooling was analysed in sections in
Mutlu et al. (1998a), isolating draw-down flow and studying the effects of stress
pre-history and various boundary conditions. This led to a further study (Mutlu
et al., 1998b) on coupled and decoupled solution procedures for a range of model
fluids, approaching those of industrial relevance. In Matallah et al. (2001),
single-mode calculations were compared to those of multi-mode type for LDPE
and HDPE grade polymers. The multi-mode computations revealed the
dominant modes of most significance to the process and gave insight as to the
levels of residual stress in the resultant coatings. Further work on multi-mode
modelling of Matallah et al. (2000), emphasised the influence of die-design
on optimal process setting. Three, as opposed to seven modes, were found
adequate to sufficiently describe the flow. The draw-down residence time,
which dictates the dominance of certain modes within the relaxation time
spectrum, was found to be a major factor to influence the decay of residual
stressing in the coating.

With specific attention paid to slip for viscous flows, a semi-implicit Taylor-
Galerkin/pressure-correction procedure was used by the present authors
(Ngamaramvaranggul and Webster, 2000a) for pressure-tooling and tube-tooling.
There, the influence of slip onset, as opposed to no-slip conditions within the die,
was examined. Tracking free surfaces, our earlier work on model problems
addressed stick-slip and die-swell flows, see Ngamaramvaranggul and Webster
(2000b); Ngamaramvaranggul and Webster (2001). In a recent article for pressure-
tooling (Ngamaramvaranggul and Webster, 2002), the influence of material
rheology was investigated on free-surface flow, whilst tube-tooling was the
subject in Matallah et al (2001). The present analysis extends upon this work,
contrasting comparative designs via a distributed parallel implementation. The
computational efficiency over various processor-cluster sizes is of particular
interest. Distributed computations are performed over homogeneous network
clusters of Intel-chip workstations, running a Solaris Operating System. In this
respect, our earlier experience with parallelisation for large, yet model
problems (Baloch et al., 2000), is taken into the industrial processing realm.
There, Parallel Virtual Machine (PVM) message passing libraries were used
over heterogeneous clusters, comprising of DEC-alpha, Intel-Solaris and AMD-K7
(Athlon) Linux processors.

The outline of the current paper is as follows. First, the governing equations
are described, followed by the rheological behaviour of the PTT model. In
section 4, the three different problems are specified. This is followed, by an
outline to the parallel TGPC numerical method employed for the simulations.
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The results of the simulations are presented in section 6 and some conclusions
are drawn in section 7.

2. Governing equations
Isothermal flow of incompressible viscoelastic fluid can be modelled through a
system comprising of the generalised momentum transport, conservation of
mass and viscoelastic stress constitutive equations. The problems in this study
are modeled as annular and two-dimensional. In the absence of body forces,
such a system can be represented in the form:

7 · v ¼ 0; ð1Þ

r
›v

›t
¼ 7 ·s2 rv ·7v: ð2Þ

Here, v is the fluid velocity vector field, s is the Cauchy stress tensor, r is the
fluid density, t represents time, and divergence and gradient operations are
implied via 7. The Cauchy stress tensor can be expressed in the form:

s ¼ 2pdþ T e;

where p is the isotropic fluid pressure, d is the Kronecker delta tensor, and Te is
the stress tensor. For viscoelastic flows, stress Te can be decomposed into
solvent and polymeric contributions,

T e ¼ tþ 2m2d ;

with tensors, t, the elastic extra-stress and rate-of-strain d ¼ 0:5½7vþ ð7vÞ†�
(superscript † denotes a matrix transpose). m2 is a solvent and m1 a polymeric
solute viscosity, such that m ¼ m1 þ m2. The particular choice of constitutive
model is that of Phan-Thien and Tanner (1977); Phan-Thien (1978), in
exponential form (EPPT). In contrast to models, such as constant shear
viscosity Oldroyd-B, this EPPT version supports shear-thinning and finite
extensional viscosity behaviour. The constitutive equations for the extra-stress
of the EPTT model is expressed as:

l1
›t

›t
¼ 2m1d þ f t2 l1{t ·7v þ ð7vÞ† · t2 v ·7t}; ð3Þ

with an averaged relaxation time l1 and function f, defined in terms of trace of
stress, trace (t ), as:

f ¼ exp
1l1

m1
traceðtÞ

� �
:

The material parameters that control shear and elongational properties of
the fluid are e and m1, respectively. These may be evaluated by fitting to the
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experimental data (Matallah et al., 2001; Matallah et al., 2000). When 1 vanishes,
the Oldroyd-B model is recovered and f ¼ 1.

We find it convenient to express the governing equations in non-dimensional
form, by defining corresponding scales of characteristic length R, taken as
coating length (Figures 2–4), and wire-speed as characteristic velocity scale, V.
Then, stress and pressure are scaled by a factor of mV=R,and time by R=V .
There are two non-dimensional group numbers of relevance, Weissenberg
number We ¼ Vl1=R and Reynolds number Re ¼ rVR=m.

3. Shear and elongational behaviour of EPTT
Many common non-Newtonian fluids exhibit non-constant viscosity behaviour.
So, for example, such materials may display shear-thinning, where the
viscosity is a decreasing function of increasing shear rate as illustrated in
Figures 1a in pure shear. Figure 1b reflects a similar plot, demonstrating the
functional dependence of viscosity under increasing strain-rate in pure uniaxial
extension. This is termed the elongational or extensional viscosity behaviour.
The merits of the PTT model over the Maxwell model are highlighted by Phan-
Thien and Tanner (1992), noting that, the Maxwellian elongational viscosity is
singular at finite strain rates. The shear and extensional viscosity functions, ms

and me, of the PTT model variants may be expressed as a function of f itself,
taken of exponential form as above, via

msð _gÞ ¼ m2 þ
m1

f
; ð4Þ

and

með _1Þ ¼ 3m2 þ
2m1

f 2 2l1 _1
þ

m

f þ l1 _1
: ð5Þ

Under general flow conditions, there is need to record generalized shear and
strain-rates, that are defined via flow invariants as, respectively:

_g ¼ 2
ffiffiffiffiffiffi
IId

p
; _1 ¼ 3

IIId

IId

; ð6Þ

where IId and IIId are the second and third invariants of the rate of strain
tensor d. Such quantities are represented as

IId ¼
1

2
traceðdÞ ¼

1

2

›vr

›r

� �2

þ
›vz

›z

� �2

þ
vr

r

� �2

þ
1

2

›vr

›z
þ

›vz

›r

� �2
( )

; ð7Þ

IIId ¼ detðdÞ ¼
vr

r

›vr

›r

›vz

›z
2

1

4

›vr

›z
þ

›v2

›r

� �2
( )

: ð8Þ
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In pure shear, ms varies with e , m1, and l1. The effect of elevating m1 from levels
of 0.88 to 0.99 and 0.95 reduces the second Newtonian plateau level from
0(1021) to 0(1022) and below. Here m1 ¼ 0:99 solute fraction is taken as
suitable. Shifting of l1, (via We) from unity to 0(10) and 0(102), translates ms in a
constant shift fashion. The larger l1, the earlier the departure occurs from the
first Newtonian plateau. Current material and process settings suggest l1 of
0(1s ) is a reasonable choice, so that We ¼ 200: With selection of m1 ¼ 0:99
and We ¼ 200; the influence of the e-parameter choice is relatively minor.

Figure 1.
EPTT model
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Figure 3.
Full-die pressure-tooling

Figure 2.
Short-die pressure-
tooling

HFF
12,4

464



Increasing e from 0.1 to 0(1) slightly retards the ms pattern, so that earlier
departure from the first Newtonian plateau occurs. Here, e of unity is selected.

In steady uniaxial extension, me follows the behavioural trends of ms for both
We and m1 parameters. Distinction may be found via the e-parameter. Taking
the tuple setting ðm1;WeÞ ¼ ð0:99; 200Þ, for 0:1 # e # 0:5; reflects strain-
hardening at low strain rates prior to softening at rates above 1022. Only
softening is apparent for 1 , 0(1). The EPTT (1,0.99,200) model demonstrates
the desired viscometric functional behaviour, shear-thinning and strain-
softening, within the deformation rate ranges of dominant interest for the wire-
coating process, as one might typically encounter, say, for an LDPE grade
polymer at 2308C. As a consequence of these viscometric functions, we observe
later in the actual flows of current interest, that maximum shear-rates may rise
to O(102) units, whilst strain-rates reach O(101). This, in turn, implies that
second Newtonian plateaus will be reached in-situ.

4. Specification of problems
This paper deals with the study of three types of flow: die swell/drag flow
(short-die tooling), full-die pressure-tooling flow, and tube-tooling flow.

4.1 Die-swell/drag flow
This annular problem illustrates the progressive effects of an imposed drag
flow from the travelling wire on both the classic die swell problem (within the
free jet-flow region) and stick-slip flow (see Figure 2). Mesh refinement
considerations follow our previous studies (Ngamaramvaranggul and Webster,
2002; Ngamaramvaranggul and Webster, 2000b; Ngamaramvaranggul and
Webster, 2001), where the fine mesh of Figure 2b is found suitable. The
flowrate through the die is fixed by the fully-developed annular inlet flow
profile under pressure-driven conditions. No-slip conditions are applied at
the die wall boundaries. The wire and inlet channel radii comprise the
characteristic length, while characteristic velocity is directly related to the
constant wire-speed at the lower boundary of the domain. The rapid reduction
in traction at the free jet surface gives rise to the fully-developed plug flow at
the domain outflow.

4.2 Pressure-tooling
Pressure-tooling flow is an extension to the previous die-swell/drag flow study,
the domain of which is specified in Figure 3a. This domain contains an initial
short-die flow zone within the land region of the die (z6, z7), followed by a jet
flow region at the die exit. The traveling wire within the die, moving at a fixed
speed, first makes contact with the pressure-driven annular flow at z3 station.
The influence of the wire on the polymer melt at this boundary region is
referred to in Ngamaramvaranggul and Webster (2002); Binding et al. (1996);
Ngamaramvaranggul and Webster (2000a). Flow within the die is restrained by
no-slip boundary conditions at the die walls. The swelling effects observed in
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the jet flow region are caused by the sudden drop to atmospheric pressure,
combined with the immediate lack of traction. This swell, in the extruded
polymer, levels out to a fully-developed plug flow, by the time it reaches the end
of the pressure-tooling domain. The biased fine mesh of Figure 3b is employed,
for further details see our prior study (Ngamaramvaranggul and Webster,
2002).

4.3 Tube-tooling
A schematic illustration of the full-die tube-tooling domain is shown in
Figure 4a. This was computed upon with the fine mesh of Figure 4b. Problem
dimensions are largely in common with the full pressure-tooling specification.
So, for example, the lower and upper die wall converging angles are 308 and
178, at positions z10 and z3, respectively. No-slip die-wall boundary conditions
apply throughout the die. In the final draw-down region (z4z5 and z8z9), free
surface conditions apply. For tube-tooling, the wire makes contact with
the polymer melt at the end of the draw-down region z5, with the coating
length upon the wire being taken as the characteristic length R2. As for
pressure-tooling, the wire dimensions, inlet hydraulic radius (R2), and total die
length (3R2), again apply in this example. In our previous investigations
(Ngamaramvaranggul and Webster, 2002; Ngamaramvaranggul and Webster,
2001), we focused upon mesh convergence studies. Here, numerical solutions
are generated on fine meshes only, the detailed statistics of which are recorded
in Table I for all three problems, inclusive of degrees of freedom (DOF), for
Newtonian (N ) models and viscoelastic (V ) models.

Figure 4.
Full-die tube-tooling
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5. Numerical scheme
5.1 Sequential Taylor-Galerkin algorithm
A time-marching finite element algorithm is employed in this investigation to
compute steady viscoelastic solution through a semi-implicit Taylor-Petrov-
Galerkin/pressure-correction scheme (Townsend and Webster, 1987; Hawken
et al., 1990; Carew et al., 1993; Baloch and Webster, 1995; Baloch et al., 1998;
Matallah et al., 1998), based on a fractional-step formulation. This involves
discretisation for equations (1–3), first in the temporal domain, adopting a
Taylor series expansion in time and a pressure-correction operator-split, to
build a second-order time-stepping scheme. Spatial discretisation is achieved
via Galerkin approximation for momentum and Petrov-Galerkin for the
constitutive equations. The finite element basis functions employed are
quadratic for velocities and stress, and linear for pressure, defined over two-
dimensional triangular elements. Galerkin integrals are evaluated by a seven
point Gauss quadrature rule. The time-stepping scheme includes a semi-
implicit treatment for the momentum equation to avoid restrictive viscous
stability constraints. Solution of each fractional-staged equation is
accomplished via an iterative solver. That is, with the exception of the
temporal pressure-difference Poisson equation, which is solved through a direct
Choleski procedure. The semi-implicit Taylor-Galerkin/pressure-correction
method may be presented in semi-discrete temporal format as:

Stage 1a:

2Re

Dt
ðv nþ1

2 2 v nÞ ¼ ½7 · ð2m2d þ tÞ2 Rev ·7v 2 7p�n þ 7 ·m2ðd
nþ1

2 2 d nÞ;

2We

Dt
ðtnþ1

2 2 tnÞn ¼ 2m1d 2 f t2 We½v ·7t2 7v · t2 ð7v · tÞ†�n:

Stage 1b:

Re

Dt
ðv* 2 vnÞ ¼ ½7 · ð2m2d 2 7p�n þ ½7�t2 Rev ·7v�nþ

1
2 þ 7 ·m2ðd* 2 d nÞ;

We

Dt
tnþ1

2 2 tn
� �

¼ 2m1d 2 f t2 We½v ·7t2 7v · t2 ð7v · tÞ†�nþ
1
2:

Meshes Elements Nodes DOF(N) DOF(V)

Short-die 288 377 929 2437
Pressure-tooling 3810 7905 17858 49478
Tube-tooling 4714 9755 22031 61051

Table I.
Finite element mesh

data
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Stage 2:
Dt

2
72ðpnþ1 2 pnÞ ¼ Re7 · v*

Stage 3:
2Re

Dt
ðv nþ1 2 v* Þ ¼ 27ðpnþ1 2 pnÞ:

Here, n is the time step number and v* is a non-solenoidal vector field. The
velocity and stress components of Stage 1a are taken for a half time step
(i.e., nþ 1=2), while at Stage 1b, the v* velocities and stresses are computed
over a full time step (nþ 1). In combination, Stage 1 constitutes a predictor-
corrector doublet, performed once per time-step. This concludes derivation
of stress components for a complete time step. Pressure differences over this
period are calculated from the Poisson equation (Stage 2), depending upon
the intermediate vector field v*. Solution of this Poisson equation yields the
solenoidal velocity over a full time step, as shown in Stage 3 (see Townsend
and Webster (1987); Hawken et al. (1990)). Free-surface reassessment is
conducted at a fourth stage (see on). Recovery of velocity gradients within
the constitutive equation further enhances stability of the system, along
with streamline-upwind Petrov-Galerkin weighting. Determination of time
step (typically O(1023)) is made on the basis of a Courant stability
constraint.

5.2 Parallel Taylor-Galerkin algorithm
The semi-implicit time-stepping TGPC algorithm is parallelised as follows.
Each of the individual fractional-stage phases of the algorithm is parallelised
within a single time-step loop. This implies operations of gather and scatter of
data, pre- and post- each phase, respectively. In such a manner, the combined
problem is split into associated sub-problems relating to each subdomain. We
relate such operations with message passing between master and slave
processors, achieved via PVM send and receive communication commands.
This is a crucial issue to ensure correct system configuration and network
communication. This slave processors solve subdomain problems, whilst the
master processor resolves the interface problem and controls master-slave
communication (Grant et al., 1998).

Of the various fractional-stages, the pressure equation step is the only one
that is conducted through a direct solution procedure (Choleski), involving the
explicit parallel construction and solution of a matrix problem. Remaining
stages are associated with an iterative solution procedure (Jacobi). It is upon
this basis that the exceptional parallel performance characteristics are
achieved. The complete detail behind the parallelisation of the TGPC and these
two algebraic solution procedures is provided in Grant et al. (1998). Briefly,
both necessitate an assembly and solution phase, involving finite element loop
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construction of right-hand-side vectors and matrix components. For Choleski,
the matrix components must be stored. Fortunately, this is manageable even
for large problems, as the pressure variable in question is of scalar form on the
field.

Solution phases radically differ between iterative and direct procedures.
The iterative solution phase is nodally-based. Each sub-problem on a slave
processor, first computes contributions for the boundary (interfacing) nodes, so
that their result may be communicated to the master processor directly, whilst
the computation for interior sub-domain nodes is completed. This enables
effective masking of communication. The master processor must then process
the combined domain contributions for the interfacing nodes, as well as
performing system synchronisation and intercommunication processor control.
Utilising an iteration number r, acceleration factor v, right-hand side vector b,
iteration sub-domain vector XPi, system (mass) matrix Mfe and diagonal
matrix Md, the parallel finite element Jacobi iteration may be expressed in
concise notational form, as

par

XP1

. . .

XP2

. . .

XP3

. . .

..

.

. . .

XPn

2
666666666666666666664

3
777777777777777777775

rþ1

nodes

¼ ðI 2 vM21
d M feÞ

XP

. . .

XP

. . .

XP3

. . .

..

.

. . .

XPn

2
666666666666666666664

3
777777777777777777775

r

nodes

þ vM21
d ½b�nodes

The mass-matrix (Mfe) is based on quadratic finite element functions, its
diagonalised form (Md) is one of absolute row-sum, and the iterative
acceleration parameter v may be selected to suit (often simply taken as unity).
System matrices are referenced and evaluated at the element level only, so that
a complete system is never stored. A single iteration sweep of this sort will
maintain integrity levels of the data re-synchronisation. Care likewise must be
taken with respect to consistent solution increment tolerance calculations,
across individual slave and master processors.

The parallel direct solution phase adopts a Schur-complement approach.
This introduces a herring-bone structure to the complete system matrix
problem, via the associated nodal numbering on each subdomain and the
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interfacing boundary nodes. The parallel herring-bone structure of the Choleski
system matrix may be represented as

par

½P1� ½MP1�

½P2� ½MP2�

½P3� ½MP3�

· ·

·

· ½Pn� ½MPn�

½P1M� ½P2M � ½P3M � ½PnM � ½M �

2
66666666666664

3
77777777777775

Herring Bone Structure (Schur-complement)

with [Pi] the subdomain problem for the interior of subdomain i, [PiM ], the
matrix contribution of interior subdomain i to the boundary-node problem, and
[M ] that for the boundary-nodes.

The subdomain problem, for each interior subdomain (on a single slave
processor), may be solved in parallel with all others. Finally, the interfacing-
node matrix problem is solved, for which all available processors may be used.
To date, the size of the interfacing-node matrix problem has been such that a
single processor (the master) has been employed to resolve it. In such a fashion,
it is possible to render large-scale problems tractable, typically of three-
dimensional or viscoelastic form (Grant et al., 1998).

5.3 Free-surface procedure
The term die-swell describes the radial increase of the polymer melt in the free-
jet flow on exiting the die. It is represented as the swelling ratio ðx ¼ Rj=RÞ,
where Rj is the jet radius and R is the tube radius. This phenomenon is of
considerable significance to some polymer processing operations in industry.
For creeping flow, without gravity, and with large surface tension, die swell
was defined analytically by Richardson (1970). A number of numerical schemes
can be used to calculate die swell. Comparisons in performance between free
surface estimation algorithms, utilising finite differences, finite elements, and
boundary element methods can be found in Crochet et al. (1984) and Tanner
(1985). These surveys cover the varying accuracy of the above methods and
asymptotic analysis for viscoelastic and Newtonian fluids in axisymmetric and
planar die flows. Below we introduce two schemes for the numerical prediction
of free surfaces: the streamline prediction method and the mass balance
method. These are incorporated into the present algorithm at a fourth
terminating stage within the time-step loop.

 
	

	
!
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5.4 Stream-line prediction method
A modified iterative free surface location method was used to determine
extrusion profiles. Three boundary conditions are used to describe the free
surface, see Crochet et al. (1984),

vrnr þ vznz ¼ 0; ð9Þ

trnr þ tznz ¼ S
1

r1
þ

1

r2

� �
; ð10Þ

trnz 2 tznr ¼ 0; ð11Þ

Where free surface unit normal components are ðnr; nzÞ, curvature radii
ðr1; r2Þ, surface tension coefficient S (vanishes here), radial and axial velocities
ðvr; vzÞ and surface forces normal to the free surface ðtr; tzÞ.

Boundary condition (10) and (11) are used when iteratively modelling the
free surface. Conditions (9) is then included to define the normal velocity. The
upper extruded flow surface can then be obtained for die-swell extrusion. For a
tube radius R, the distance r(z ) of the free surface from the axis of symmetry is
represented by:

rðzÞ ¼ R þ

Z 1

z¼0

vrðzÞ

vzðzÞ
dz: ð12Þ

In order to accurately predict the extrusion shape, Simpsons quadrature rule is
used to compute the integral of equation (12).

The procedure of solution is as follows. First, the kinematics for a converged
Newtonian solution is used as initial conditions, with a relaxed stress field, and
the fixed free-surface problem is solved. Subsequently, the full problem is
computed, involving the free surface calculation, where the surface location
itself must be determined. Continuation from one particular viscoelastic
solution setting to the next is then employed. In some instances, it is stabilising
to first enforce vanishing surface extra-stress (t of equation (3)), prior to
relaxing such a constraint. To satisfy the zero normal velocity free surface
boundary condition and to compensate for the adjustment of the free surface,
the velocity solution at the advanced time surface position must be reprojected
from the previous surface position.

5.5 Mass balance method
The pressure drop/mass balance method provides an adequate means of
correcting the estimation of the free surface position. Such a technique may
provide improved solution accuracy and stability over the regular streamline
location method. The procedure involves taking, an initial estimate of the
free-surface profile for each Weissenberg number. Sampling points for We
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begin from the stick-slip region. The final correction stage makes use of the
streamline method, to perturb and validate the position of the die swell surface.

By examining the functional dependence of pressure drop (Dp ) in swell (x )
profiles at the centreline, for each We level, the mass balance scheme relates
flow characteristics between the stick-slip to die-swell phases of the problem
(akin to an expression of energy balance). By taking into account known swell
predictions with sampled pressure drop results, a general relationship may be
established between these two scenarios:

xðzÞ ¼
Dpðz;WeÞ

f ðWeÞ
;

By fitting to prior and accepted data (say at low We levels, from the streamline
method), the denominator can be represented by:

f ðWeÞ ¼ 10:68 2 0:133We 2 2:125 We2:

Using this approach, it is possible to derive the approximate swell after
pressure drop calculations are made. This process is then implemented within
an iterative time-stepping procedure, to obtain a converged solution. Such a
strategy is found to be absolutely necessary to achieve converged free-surface
solutions at the extreme levels of parameters relevant to industrial processing,
notably high We and low solvent contribution.

6. Numerical predictions and discussion
6.1 Short-die, pressure-tooling
The solution for short-die pressure-tooling is illustrated through field plots, in
terms of pressure, extension rate and shear rate in Figure 5 and stress
component contours in Figure 7. The short-die problem, taken on the 6 £ 24
element mesh, is idealised flow. It proves useful to encapsulate the essence of
pressure-tooling, devoid of the complexity of the full die. In contrast, the full-die
study reveals the implications of actual processing conditions.

The pressure drop across the flow reaches 0.46 units (relative to ambient
pressure), where the die length to exit gap width ratio is of the order 2:1. This
drop corresponds to that across the die alone. The minimum pressure arises at
the top surface die-exit. The shear rate I2 is two orders of magnitude larger
than the extension rate, peaking with 31.3 units at the top die-exit boundary.
Upon entering the jet region, the shear rate rapidly decline and vanishes. The
flow profile adjusts from a shear flow within the die to a plug flow in the jet.
The flow profiles of Figure 6 reflect this position, with a linear decrease in
pressure observed along the wire within the die. Maximum swell within the jet
reaches 1.054 units. This would correspond to typical results reported in the
literature Mitsoulis (1986); Mitsoulis et al. (1988); Wagner and Mitsoulis (1985);
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Ngamaramvaranggul and Webster (2000b); Ngamaramvaranggul and Webster
(2001).

Field plots on the stress components of Figure 7, illustrate the dominance of
the axial stress, that in maxima is three times larger than the shear stress and
five times larger than the radial stress. The sharp adjustment is noted at
die-exit on the top-surface in both shear and axial stress, Trz and Tzz-profiles of
Figure 8 and 9, respectively. Profiles on the wire are relatively smooth, in
contrast. We have observed in our earlier work (Ngamaramvaranggul and
Webster, 2002), that the strain-softening response of the EPTT model, stabilises

Figure 5.
Short-die

Simulation of
pressure- and

tube-tooling

473



Figure 6.
Short-die; (a) pressure
along the wire, (b) I2 on
top surface, (c) die swell
on top free
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stress profiles. This stands in stark contrast to models that support strain-
hardening.

6.2 Full-die, pressure-tooling
Following our earlier study on mesh convergence (Ngamaramvaranggul and
Webster, 2002), for this problem our results are plotted upon the biased fine
mesh of Figure 3b, with identical parameter settings as for the short-die flow.
The zonal refinements are outlined in Table II, with greatest density and bias in
the land and die-exit regions.

Figure 7.
Short-die: (a) Trr

contours, (b) Trz

contours, (c) Tzz contours
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The filed plots of Figure 10 indicate an intense drop in pressure local to the land
region, reaching a maximum pressure drop of 10.1 units. Shear rate, I2, also
identifies significant shearing over the land region, reaching a peak of 461 units
at the die-exit, a fifteen fold increase to that obtained for short-die tooling.

Figure 8.
Short-die: Trz (a) on top
surface, (b) on wire

Sub-region zone Biased fine mesh

1. inlet die 15 £ 20
2. converging die 15 £ 25
3. coating region 15 £ 30
4. land region 15 £ 5
5. jet region 15 £ 47

Table II.
Full-die pressure-
tooling; mesh
characteristics,
sub-region zones

HFF
12,4

476



Strain rates, _1, are an order of magnitude lower than shear rates, and display
peaks at melt-wire contact and die-exit. At the melt-wire contact point, _1
increases to 8.37 units. A rapid larger rise occurs in the wire-coating section at
die-exit. The second peak in _1-profile at the top boundary, characteristic for the
full-die, reaches a height of 18.8 units in the post-die exit region.

The pressure along the bottom surface corresponds to the line contour plot
of Figure 11a. Pressure difference is twenty two times greater for the full case,
above short-die pressure-tooling (as compared with Figure 5). Note that, these
drops in pressure, essentially correspond to the same flow zone, that is, over the
land-region at jet-entry. The die-swell profile along the top free-surface is given
in Figure 11b. The swelling ratio is fifteen percent larger than that for short-die
pressure-tooling.

Figure 9.
Short-die Tzz (a) on top

surface, (b) on wire
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Shear rate profiles, along the top and bottom surfaces, are represented in Figure
12. The top surface I2 peak of 461.7 units at the die-exit (Figure 12a), is fifteen
times greater than that for short-die, pressure-tooling (see Figure 6b). Figure
data on I2 maxima may be found in Table III. Along the bottom surface, the
double (sudden shock) peaks of 124 and 140 units of Figure 12b are most
prominent. Such peaks do not appear in the short-die case, being a new
introduction as a consequence of the full-die and melt-wire contact.

The “shock impact” as the fluid makes contact with the wire is most
prominent in the radial, shear and axial stress contour plots of Figure 13.

Figure 10.
Full-die pressure-tooling:
(a) pressure contours,
(b) I2 contours, (c) _1
contours
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Nevertheless, stress levels within the die remain small, the greatest axial stress
of 0.069 units occurs upon melt-wire contact.

Top-surface stress profiles of Figure 14a and 15a, demonstrate most clearly,
the “localised effect” of die-exit point discontinuity. A violent jump in shear
stress is observed over the land region. Comparison of stress between full-die
and short-die pressure-tooling instances reveals factor increases of 1.8 times in
Trz and 1.7 times in Tzz (Table III). Both shear and axial stress profiles along
the bottom wire-surface reveal the influence of the moving-wire on the flow
at the melt-wire contact point (axial position 21.1 units). In axial stress of
Figure 15, along the bottom surface, the characteristic “double peak” profile at
the melt-wire contact point and die-exit regions is observed. The axial stress
peak at the melt-wire contact point exceeds that at die-exit and is followed by a
sharp relaxation on the approach to the land region, upon which a more

Figure 11.
Full-die pressure-tooling:

(a) pressure along the
wire, (b) die swell on top

free
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sustained maxima forms. Notably, in the extrudate, Tzz remains positive, and
provides some residual stressing to the coating. Tzz-maxima increase only
slightly from case to case, with full-case pressure-tooling values being about
twice for the short-die instance.

Figure 12.
Full-die pressure-tooling:
I2 (a) on top surface, (b) on
bottom surface

Solution variables Short-die Full-die Tube-tooling

I2 max, Top 31.35 461.7 127.7
I2 max, Bot – 139.7 144.2
_1 max 0.144 18.83 4.43
Dp 0.462 10.18 16.09
Trx max 0.014 0.025 0.024
Tzz max 0.041 0.069 0.050
x 1.054 1.215 –

Table III.
EPTT ðe ¼ 1; m1 ¼
0:99; We ¼ 200Þ;
solution values
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6.3 Tube-tooling
Concerning the tube-tooling problem, our analyses are based on a single refined
mesh as displayed in Figure 4b, see Townsend and Webster (1987). Mesh
characteristics for each sub-region are provided in Table IV. As displayed in
Figure 16a, the pressure-drop is most prominent across the tube-die. At the
draw-down and coating regions, the pressure hold to an ambient level. The

Figure 13.
Full-die pressure-tooling:

(a) Trr contours, (b) Trz

contours, (c) Tzz contours
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most important rate of change in pressure-drop arises across the land-region, as
is true for pressure-tooling. Here, the maximum value is higher, of 16.1 units for
tube-tooling compared to 10.2 units for pressure-tooling.

In contrast, shear-rate I2, is about a quarter of that corresponding to
pressure-tooling. The maximum is 144 units. Again, higher shear-rates are
attained in the land-region, see Figure 16b. The remaining regions display
smaller shear-rates, so that the shear-viscosity of the polymer melt will be high
there. The shear-rate profiles are also displayed in Figure 17b and c, plotted
along the top and bottom surfaces in the axial direction. The shear-rates
increase across the converging cone, from 0.89 units at the inlet-tube and start
of the converging cone to 14.6 units at its end. A sudden rise in shear-rate
occurs when the polymer enters the land-region, across which a constant value
is generated. Shear-rate maxima are generated at the die-exit, with values of

Figure 14.
Full-die pressure-tooling:
Trz (a) on top surface,
(b) on wire
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144.2 and 127.2 units at the bottom and top surfaces, respectively. Beyond the
die-exit entering the draw-down flow, a sharp drop in shear-rate is observed.
Similar behaviour is observed in both top and bottom surface shear-rate
profiles. There is only a gradual decrease in shear-rate over the draw-down

Figure 15.
Full-die pressure-tooling:

Tzz a) on top surface,
(b) on wire

Sub-region zone Biased fine mesh

1. inlet die 12 £ 45
2. converging die 12 £ 18+15 £ 8
3. land region 15 £ 12+20 £ 12
4. draw-down region 20 £ 25
5. coating region 20 £ 25

Table IV.
Tube-tooling; mesh
characteristics, sub-

region zones
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section, followed by a sharp decline when the polymer meets the wire.
Traveling with the wire, the rate of decrease in shear-rates is minimal. The final
shear-rates, taken up at the end of the coating, are about 0.26 and 1.0 units for
bottom and top surfaces, respectively.

The state of strain-rate _1 is illustrated in Figure 16c. This quantity is
significant in the converging tube. It reaches a maximum of about 4.43 units, an
order of magnitude lower than that for shear-rate maxima. This is a fifth of that
corresponding to pressure-tooling maxima. Large values of strain-rate are also
located, of less magnitude, at the start of the draw-down section just beyond the
die-exit. The value reached is about 2.50 units, half of that observed in the
converging die-cone. The profiles for _1 along the axial direction, for top and
bottom surfaces show similar behaviour to each other, with exceptions at the
sharp adjustments in geometry. Elongation-rates are large at the land region

Figure 16.
Tube-tooling: (a) pressure
contours, (b) I2 contours,
(c) _1 contours
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Figure 17.
Tube-tooling: (a) pressure

along the wire, (b) I2 on
top surface, (c) I2 on

bottom surface
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entrance, reaching a maximum of 4.43 units, being minimal in the remaining
flow section. Shear and strain-rates are important measurable quantities that
describe the state of flow and, according to the ranges encountered, may
explain the polymer response to different flow scenarios.

Component stress profiles along the top surface are provided in Figure 18 a)
for trz and b ) for tzz. One may observe from this, that along the inlet-tube, tzz is
constant, of about 0.02 units. Sudden change occurs with each adjustment in
geometry. An increase of tzz is observed within the converging cone of the die,
reaching a value of 0.045 units at the entrance to the land-region. tzz is constant
over the land-region, followed by a sudden increase due to singularity, where
the polymer departs from the die to the draw-down section. A sharp decrease
within the draw-down is generated. When the polymer makes contact with the
wire, tzz increases providing a residual stress of about 0.012 units. In contrast,

Figure 18.
Tube-tooling: on top
surface (a) Trz (b) Tzz
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the shear-stress trz is lower in value than the tzz component, as displayed in
Figure 18a. trz starts with a value of about 0.007 units at the inlet tube, increase
over the converging cone to reach a constant value of 0.01 units across the land-
region. Subsequently, trz decreases in the draw-down and coating regions to a
minimum value less than 0.001 units. Contours are plotted in Figure 19 to
analyse the state of stress over the whole domain and in various components.
trr can be considered to be small in the inlet-tube and land-region: it is
significant in the converging cone, draw-down and coating regions. A maximum
of about 0.05 units is realised in the draw-down section. For trz, we observe a
peak (0.024 units) in the converging die-cone, near the entrance to the land-
region. The shear-stress is also prominent in the land-region, but of less
magnitude (about half) than that over the converging cone. Axial tzz stress is
most significant in the land-region, as observed in Figure 19c. The maximum

Figure 19.
Tube-tooling: (a) Trr

contours, (b) Trz

contours, (c) Tzz contours
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value, 0.051 units, is double that of the shear-stress. Hence, residual stressing to
the coating is dominated by the axial component.

6.4 Parallel timings
Parallel computation is employed, within the simulations performed through a
spatial domain decomposition method. The domain of interest is decomposed
into a number of subdomains, according to available resources and total
number of DOF. In this study, uniform load distribution is ensured using a
Recursive Spectral Bisection method (Simon, 1991). Though the method is quite
general, uniform load may be organized if domain subdivision is
straightforward, otherwise loading will be approximately uniform, from
which manual adjustment may be made. As the short-die domain has relatively
few DOF, the domain is decomposed into instances with only two and four sub-
domains. In contrast, tube-tooling and pressure-tooling domains are partitioned
into as many as eight sub-domains.

In Table V, information is presented on domain decomposition, the number
of elements and nodes per subdomain, the number of interfacing nodes and
ratio of subdomain nodes to interfacing nodes (Cn¼Nn :Inn), With an increasing
number of subdomains, interfacing nodes (Inn) increase (as does communication
cost), whilst the number of elements, nodes (Nn) and degrees-of-freedom per
subdomain decreases.

Parallel timings are generated on a networked cluster of single processor
Intel 450 MHz Solaris workstations, a distributed-memory homogeneous
platform. A public domain PVM 3.4.3 version for message passing protocol has
been employed to support interprocessor communication through networking
with fast 100 Mbit/s EtherNet. Computed results are presented through the

Domain Elements/ Nodes/ Interface nodes Cn

Short-die subdomain subdomain Master Slave Master Slave

1 288 377 – – – –
2 144 325 13 13 4% 4%
4 72 169 39 26 23% 15.4%
Pressure-tooling
1 3810 7905 – – – –
2 1905 3968 31 31 0.78% 0.78%
4 953 1976 93 62 4.71 3.14%
8 476 988 217 62 22.0% 6.28%
Tube-tooling
1 4714 9755 – – – –
2 2357 4878 31 31 0.64% 2.75%
4 1178 2439 103 67 4.22% 2.75%
8 589 1222 272 71 22.3% 5.81%

Table V.
Domain
decomposition data
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parallel performance of the Taylor-Galerkin scheme, by measuring metrics of
speed-up and efficiency, with increasing numbers of processors (hence, sub-
tasks). The total speed-up (Sn) factor and efficiency (hn) are defined as:

Sn ¼
Tseq

Tn
; hn ¼

Sn

n
;

Where n is the number of processors, Tseq is the CPU time in seconds (s ) for the
sequential algorithm and Tn is the CPU time for the parallel algorithm. CPU
time Tn of the parallel computation can be decomposed into computation time
ðTcomp

n Þand communication time ðTcomm
n Þ. Timings correspond to total job run-

time, inclusive of input-output and communication latency.
In Table VI, speed-up and efficiency factors are tabulated for our parallel

implementations. Speed-up is plotted in Figure 20 for the viscoelastic simulations
if short-die, tube-tooling and pressure-tooling problems, with increasing
numbers of processors. As the short-die problem has fewer DOF, eight percent
loss of efficiency is observed with up to four processors. For two-subdomains,

Short-die Pressure-tooling Tube-tooling
Processors Sn hn Sn hn Sn hn

1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.94 0.97 1.99 0.99 1.99 0.99
4 3.66 0.92 3.98 0.99 3.99 0.99
8 – – 7.44 0.93 7.61 0.95

Table VI.
Parallel speed-up

and efficiency

Figure 20.
Parallel speed-up
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the master processor has to communicate with thirteen interfacing nodes.
Moving to four-subdomains, the size of each task on a slave processor halves.
For full pressure-tooling and tube-tooling, with two and four subdomains, the
ratio between computation and communication remains small. At eight
subdomains, this ratio is of the same order as that for the short-die problem and
four processor. Under such circumstances with tube-tooling, the parallel
algorithm loses five percent efficiency and seven percent for pressure-tooling
problems. The consequence of this is felt within our parallel implementation
via the ratio of internal to boundary nodes in each instance. This ratio will
affect the proportion of cost, split between communication and sub-problem
computation (hence, the masking of communication (Baloch et al., 2000; Grant
et al., 1998)).

In Table V, we have recorded data relating to interfacing nodes and the ratio
between subdomain nodes and interfacing nodes (Cn). For the short-die with
two slave processors, the number of nodes is relatively few and Cn is around
four percent. Therefore, we immediately lose efficiency of about three percent.
The loss is even greater with four slave processors, see Table VI. Such
efficiency loss diminishes as Cn decreases, as clearly demonstrated in both
pressure-tooling and tube-tooling instances. To take full advantage of
parallelism and gain optimal performance levels, we seek to increase problem
size and select a minimal Cn ratio, through a judicious choice of domain
subdivision (sub-task generation, demanding prerequisite slave processors).
For both pressure-tooling and tube-tooling problems and up to four slave
processors, the Cn ratio is about three percent and we lose efficiency of one
percent. At eight slave processors, the parallel implementation loses seven
percent efficiency for the pressure-tooling problem, and five percent for the
tube-tooling problem. To achieve optimal performance levels, we must ensure a
balance between the number of processors and total number of degrees-of-
freedom per subdomain. This will also provide the optimal ratio between
ðTcomm

n Þ and Tcomp
n times. We recognize that communication and computation

times relate to different hardware mechanisms. One may identify an acceptable
threshold level on efficiency loss, of say up to five percent. For the present
study, this would imply the efficient use of two slave-processors for the short-
die problem, four slave-processors for pressure-tooling and eight slave-
processors for tube-tooling. With the proviso of sufficient processors, larger
problems may be tackled in this manner.

7. Conclusions
In the case of short-die pressure-tooling flow, there was no melt-wire sudden
contact and smooth solutions were established on the wire at the die-exit. For
the full-die study in contrast to the short-die, ranges of shear rise ten-fold and
extension rate by one hundred times. For dimensional equivalents, one must
scale by O(103). For the short-die tooling, the major observations are: maximum
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shear rates arise at die-exit, top-surface, whilst for extension rates they lie
within the free-jet region. The corresponding situation for strain rates is more
marked, but displaying similar trends to shear rate. Axial stress maxima occur
at the top surface on die-exit. For full-die pressure-tooling, shear rate maxima on
the top surface occur over the land-region, and in particular, peak at the die-
exit. The level is some fifteen times larger than that for the short-die. Shear rate
maxima on the wire are lower than that at the top surface, by a factor of three.
The double (sudden shock) peaks in shear rate at the bottom surface for full-die
flow, do not appear in the short-die case. These are a new feature, introduced as
a consequence of the full-die and melt-wire contact. There is a double peak
along the wire, with the die-exit value being marginally larger than that at
melt-wire contact. Extension rate maxima are lower than shear rates by one
order, but have increased one hundred fold from the short-die case. Extension
rates peak at the melt-wire contact and across land/die-exit region. The
maximum corresponds to the die-exit. The pressure drop across the flow is
almost entirely confined to the land-region, and is magnified some twenty-two
times over that for the short-die. The behaviour in stress for full-tooling reveals
the “shock impact” as the fluid makes contact with the wire. The largest axial
stress arises at the melt-wire contact point. The swelling ratios for the EPTT
models are 15 per cent higher than that observed for short-die tooling. Hence,
the influence of the die flow itself is exposed. The adequacy of the free-surface
procedures is also commended.

In contrast, focusing on tube-tooling desing, stress and pressure build-up is
realised in the land-region section, as with pressure-tooling. The principal
stress component tzz is significant at the end of the coating, generating a
residual stress of about 0.012 units and vanishing shear-stress. This is similar
to pressure-tooling. Shear-rates are of O(102) units, reaching a maximum of 144
units, a quarter of that corresponding to the pressure-tooling problem. This
maximum is observed at the exit of the die. Tube-tooling strain-rates are an
order of magnitude lower than tube-tooling shear-rates: strain-rate maxima
reach 4.43 units, again one quarter of those for pressure-tooling. Largest strain-
rates are generated throughout the converging did-tube, with lesser values in
the draw-down section (extrudate). Such elements of variation between designs
would have considerable impact upon the processes involved.

Distributed parallel processing has been shown to be an effective
computational tool to simulate industrial wire-coating flows. Ideal linear
speed-up in run-times has been extracted, based on the number of processors
utilised. Increasing the size of the problem, would render even greater
efficiency, providing a wider pool of processors were made available.
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